Normal-Map between Normal-Compatible Manifolds

نویسندگان

  • Frédéric Chazal
  • André Lieutier
  • Jarek Rossignac
چکیده

Consider two (n−1)-dimensional manifolds, S and S in R. We say that they are normalcompatible when the closest projection of each one onto the other is a homeomorphism. We give a tight condition under which S and S are normal-compatible. It involves the minimum feature size of S and of S and the Hausdorff distance between them. Furthermore, when S and S are normal-compatible, their Frechet distance is equal to their Hausdorff distance. Our results hold for arbitrary dimension n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ring structures of mod p equivariant cohomology rings and ring homomorphisms between them

In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...

متن کامل

Ball-Map: Homeomorphism between Compatible Surfaces

Homeomorphisms between curves and between surfaces are fundamental to many applications of 3D modeling, graphics, and animation. They define how to map a texture from one object to another, how to morph between two shapes, and how to measure the discrepancy between shapes or the variability in a class of shapes. Previously proposed maps between two surfaces, S and S ′, suffer from two drawbacks...

متن کامل

Rigidity of Fibrations over Nonpositively Curved Manifolds?

THE THEORY of manifold approximate fibrations is the correct bundle theory for topological manifolds and singular spaces. This theory plays the same role in the topological category as fiber bundle theory plays in the differentiable category and as block bundle theory plays in the piecewise linear category. For example, neighborhoods in topologically stratified spaces can be characterized and c...

متن کامل

Statistical cosymplectic manifolds and their submanifolds

    In ‎this ‎paper‎, we introduce statistical cosymplectic manifolds and investigate some properties of their tensors. We define invariant and anti-invariant submanifolds and study invariant submanifolds with normal and tangent structure vector fields. We prove that an invariant submanifold of a statistical cosymplectic manifold with tangent structure vector field is a cosymplectic and minimal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Comput. Geometry Appl.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2007